PHYSICAL REVIEW E

VOLUME 49, NUMBER 1

JANUARY 19%4

Kinetic super-roughening and anomalous dynamic scaling in nonequilibrium growth models
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We argue that recently introduced models of surface-diffusion-driven nonequilibrium growth that are
characterized by critical roughness exponents (a) exceeding unity (“super-rough” growth) exhibit an
“anomalous” form of dynamic scaling whose asymptotic behavior is different from the usual scaling
behavior of self-affine kinetic growth models with a <1. We propose a generalized scaling function for
super-rough (a>1) growth and demonstrate its applicablity to several discrete nonequilibrium super-

rough models.
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Nonequilibrium growth of thin films, where atomistic
deposition on a (d —1)-dimensional flat substrate gen-
erates a kinetically rough interface growing dynamically
in time in the “height” direction (i.e., perpendicular to
the substrate plane), is considered [1] to obey the generic
dynamic scaling behavior given by

W3L,t)~L*f(L/&(1)) , ()

where W is the interface width (measured as the root-
mean-square fluctuation of the growing surface height
around its nominal average value), L is the lateral system
size, a is the so-called roughness exponent, f(x) is the
dynamic scaling function, and £(¢) is the lateral (i.e.,
along the substrate) correlation length, beyond which the
height fluctuations become uncorrelated. The scaling
function f(x) is taken [1] to have the following asymp-
totic behavior:

const for x <<1

fix)~ (2)

x 72 for x >>1,
and the correlation function £(¢) obeys the dynamic scal-
ing behavior

) ~el7 (3)

where z is the so-called dynamical exponent. Combining
Egs. (1)-(3), which form the basic dynamic scaling hy-
pothesis for nonequilibrium growth, one finds

WI(L,t <<L?) ~t? where B=a/z ,
(4)
W(L,t >L*)~L*,

and concludes that the interface width obeys power-law
scaling with growth time, and the saturated interface
width (at long times) scales with the lateral system size L.
The dynamic scaling hypothesis for the interface width
[Egs. (1) and (4)] asserts that W2 /L2 is a general scaling
function f (x) of the variable x =L /t'/*

W2/L%**~ f(L/t'%) . (5)

Observation of scaling as in Eq. (5), or of power-law
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behavior as in Eq. (4), is necessary and sufficient to estab-
lish the existence of dynamic scaling in a particular
growth model. A large number of nonequilibrium
growth models are found [1] to obey the dynamic scaling
properties described by Eqgs. (1)-(5).

One of the key features [1] of all of these growth mod-
els (with the exception of the ones to be discussed in this
paper) is that the roughness exponent a, which character-
izes the morphology of the saturated interface fluctua-
tion for a fixed substrate size via the relation
W =WI(L,t—>0)~L% is always less than unity
(a<1), implying that the kinetically rough surface is a
self-affine fractal with the local fractal dimensionality
d —a. Note that W, /L~L“"' and therefore in the
thermodynamic limit W, /L vanishes provided a<1.
The kinetically rough self-affine interface is therefore
smooth on macroscopic length scales and the large-scale
long-time orientation of the surface is the same as the un-
derlying substrate, again provided a <1. All of this,
however, becomes invalid if a> 1, when W /L diverges
in the thermodynamic limit. Recently, one continuum
growth equation and several discrete atomistic growth
models [2-7], where surface diffusion drives the incident
atoms to the nearest maximally coordinated sites, have
been found to have a>1 in d =1+ 1 dimensions. This
pathological feature of super-roughness associated with
o> 1 (we will refer to models with a > 1 as “‘super-rough”
to emphasize the fact that W, /L diverges in the ther-
modynamic limit and therefore the large-scale, long-time
orientation of these kinetically super-rough surfaces may
differ from the substrate orientation) may make the basic
hypothesis of a growing self-affine interface obeying dy-
namic scaling inapplicable to super-rough surfaces. In
fact, it has been argued [4] that the solid-on-solid approx-
imation is invalid for super-rough surfaces. An impor-
tant additional conceptual problem with these super-
rough models is that the value of a obtained by measur-
ing W, (L) disagrees with that obtained from the asymp-
totic short-distance behavior of the height-height correla-
tion function [8,9]. In this article, we propose a theoreti-
cal model to understand kinetic super-roughness by ex-
plicitly showing that, while the basic scaling laws defined
by Egs. (4) and (5) sill apply to kinetically super-rough
surfaces, the substrate size L plays a subtle and funda-
mentally important role of a cutoff length scale in the
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a > 1 situation, which gives rise to the unusual asymptot-
ic behavior of the height-height correlation function.
The novel scaling behavior that emerges from our
analysis of the a > 1 situation shows that dynamic scaling
for super-rough surfaces [2-9] is “anomalous” in the
sense that the scaling function for the height-height
correlation function behaves quite differently from the
well-studied a <1 situation. We emphasize that Eqgs. (4)
and (5) are sill obeyed by these super-rough models—the
subtle scaling behavior manifests itself only in the asymp-
totic properties of the height-height correlation function
which is described by an effective or apparent roughness
exponent a’ =<1 resolving the pathology associated with
the super-roughness of @ > 1.

We start by considering three atomistic solid-on-solid

growth models in d =1+1 dimensions. Two of these
models are the 14+ and d2+ models of Ref. [5], studied
earlier by Das Sarma and Tamborenea [2] and by Wolf
and Villain [3], respectively. The third discrete model we
consider is the restricted-curvature (RC) model [6] of
Kim and Das Sarma. The numerically estimated (in both
d =2 and 3) dynamical exponents based on measure-
ments of W(L,t) for all of these models agree with the
theoretically calculated exponents a=(5—d)/2 and z =4
[i.e., B=a/z=(5—d)/8] of the fourth-order Herring-
Mullins linear diffusion equation [2-7] describing conser-
vative growth and nonconserved noise:
% =—v,Vh+7q, (6)
where 7 is the random noise (assumed to be Gaussian
white noise) associated with the stochastic deposition
process which is responsible for producing the kinetic
roughness during growth [the term corresponding to the
average deposition flux is not shown in Eq. (6), where
h(x,t) corresponds to the deviation from the average
height]. Finite-size simulations of W(L,t) have estab-
lished that in d =1+1 these three discrete atomistic
growth models obey the dynamic scaling hypothesis as
defined by Egs. (4) and (5) with B and a given by those
corresponding to the continuum linear growth equation
given by Eq. (6). While this by itself came as a surprise
[the fourth-order continuum growth equation, given by
Eq. (6) and its nonlinear generalizations [7], have not ear-
lier been discussed in the literature [1] because the
theoretical expectation was that all physically reasonable
atomistic growth models would correspond to second-
order continuum-growth equations], the implication of
having a > 1 is troublesome from a conceptual viewpoint.
In addition, the effective roughness exponent for these
models [and for Eq. (6)] as deduced from the asymptotic
behavior of the height correlation function differs from
that obtained from the direct measurement [2,3] of
W(L,t).

To proceed further we consider the height-height
correlation function defined by (we explicitly consider
only the d =1+ 1 dimensions in this paper)

G(r,t)=([h(x,t)—h(x +r,1)]*), (7)

where { ) denotes an averaging over lateral sites and L is
the system size. (x and r are one-dimensional vectors

along the substrate “plane.”) By a direct integration of
the fourth-order differential equation (6) it is easy to show
that the corresponding correlation function [10] behaves
in the following way

G(r,t)~r*f(r/&1)) , (8)

with a=(5—d)/2 and f(x) is a scaling function with the
following asymptotic properties [10]

x~ ! ford=2, x <1
Inx for d=3, x «1
[~ const ford >3, x <1
x7% foralld, x>1.

9

This d-dependent scaling function [whose asymptotic
behavior for x <<1 is different in d =2,3 from the usual
scaling function of Eq. (2)] arises because the integral for
G (r,t) in d =2 and 3 becomes divergent [10] in the ther-
modynamic limit for the super-rough growth models and
therefore the system size L enters as an important cut off
in the problem. The correlation length £(¢) of Eq. (8) fol-
lows the asymptotic behavior

E(t)~Lg(t'?/L) , (10)
where the scaling function g (x) obeys

x for x <1

g(x)~ [const for x >>1, (11)

so that

t17 for t'7<«< L

SO~ N1 for 11255 .

(12)

Combining Egs. (8)-(12) we conclude that the asymptotic
behavior of G (r,t) for super-rough growth models can be
written as

PITKRZ for r<<t!/F<<L
G(r,t)~ {r¥® “L* for r <<L <<t'/* (13)
t?# for r>>t1/7

where k=1 for the specific analytical continuum equation
(for d =2) defined by Eq. (6). Note that the usual
behavior of G (r,t) for models with a <1 corresponds to
k=0, and is consistent with Eq. (4) [which is very
different from Eq. (13) in the short-distance regime
r<<L,t'7:

r¥® for r<<t!/z

t2 for r>t1/7 . (14)

G(r,t)~
We emphasize that the substrate size L plays no role in
Eq. (14) (the ““usual” behavior with k=0 and a<1) and a
fundamental role [10] in Eq. (13) (the super-rough
behavior with k0 and a > 1).

We hypothesize that the asymptotic scaling behavior
defined by Eq. (13) with «70 is the generic scaling
behavior [11] of all super-rough kinetic growth models
which have a>1. [For models with a=1 as measured
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from W, ~L% one finds the exponent « to be
infinitesimal, implying a logarithmic In L dependence of
G(1,t) on L.] Note that we are generalizing the k=1 re-
sult obtained analytically for Eq. (6) to an arbitrary
super-rough situation where k (70) is not necessarily uni-
ty. We emphasize that the scaling exponents a and S
(and, consequently, z) as extracted from the dependences
of W(t) on t, and, of W, (L) on L are unaffected by this
“new” scaling behavior of the correlation function. In
particular, setting » =L in Eq. (13), we conclude that
W(t)~t? for small t, and W, (t— o)~ (L2 1L)1"2
~ L*, totally consistent with the ‘““‘usual” asymptotic scal-
ing behavior of W(L,t) discussed in our introduction.
The scaling function f(x), however, behaves very
differently in the small-x (=r/t!/?) limit, where instead
of going to a constant [Eq. (2)] as it should for the usual
dynamic scaling behavior, the super-rough scaling func-
tion falls off as x * [with k=1 for d =2 in Eq. (6),
representing the analytic-surface-diffusion-equation case]:

x ¥ for x <<1

flo~ x7% for x>>1. (15)

From the viewpoint of dynamic scaling theory, Eq. (15)
[as opposed to Eq. (2)] is the interesting anomalous
behavior of super-rough models. Thus in super-rough
models G (1,¢) increases as ¢/ in the intermediate-time
range where z' =z /k, in contrast to the “usual” (a<1)
case where G (1,t) becomes a constant.

In the rest of this article we justify this generalized
scaling ansatz (i.e., the existence of a finite k) numerically
for the three different kinetically-super-rough atomistic
growth models which have recently been studied in the
literature. The two discrete 1+ 1-dimensional models for
which we present our numerical results in this paper are
the Das Sarma—Tamborenea (DT) model [2,7] (referred
to as the 1+ model in Das Sarma and Ghaisas [5]) and
the RC model of Kim and Das Sarma [6]. Our numerical
results for the d2+ model [5] (not shown here) are essen-
tially the same as those for the DT model as presented in
Figs. 1-3. Simulation studies of these models produce
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FIG. 1. Shows the scaling collapse of f(x)=G(r1)/r’

against x =r/t%? in the DT model for five different values of ¢

(=524, 1060, 2100, 4900, and 10000). Inset shows the collapse
with =~ 1.4, z 7 1~0.24 for the RC model for 20 different values
of t =50,100,...,1000. The power-law behavior of f(x) for
small values of x gives k= 1.6 (inset: k=~ 1.0). L =10000.
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FIG. 2. Simulated G (r,t) as a function of ¢ for different fixed
values of » (=1,2,...,40 from the bottom to the top) for the
DT model (a) and the RC model (b). Simulation results are con-
sistent with Eq. (13). The upper dashed lines correspond to
2B= ¢ and the lower dashed lines correspond to x/z =0.4 (a)
and 0.25 (b). L =10000.

~3, a=~3, and z=4 as obtained numerically by study-
ing W(L,t), and therefore both models belong to the
super-rough category, having also the same critical ex-
ponents as those of Eq. (6). In Figs. 1-3 we show results
for our numerical simulation of the height-height correla-
tion in these two atomistic growth models. From Fig. 1
we conclude that both models show excellent dynamical
scaling with 2a~3 and z~4 as G (r,t)/r* plotted against
r /t%2 show perfect data collapse. Thus Eq. (8) is obeyed
in both models—the scaling function f(x), as can clearly
be seen from Fig. 1, does not approach a constant for
small values of x and, in fact, obeys the power-law scaling
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FIG. 3. Calculated G (1, «) as a function of InL showing that
k=~ 1.6 for the DT model (triangles) and k= 1.0 for the RC mod-
el (diamonds). Dotted lines with slopes 1.0 and 1.65 are indicat-
ed.
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x ~* with the numerical value of x found to be k=1 for
the RC model and k=1.6 for the DT model. In Figs. 2
and 3 we show the calculated G(r,t) respectively as a
function of ¢ for various values of r (Fig. 2), and, for fixed
r=1 and t =« as a function of the system, size L (Fig.
3). From these results, it is clear that the discrete DT
and RC Models obey the scaling ansatz defined by Egs.
(8)-(15) with k=1.0 (RC) and k= 1.6 (DT).

Before concluding we emphasize that all the solid-on-
solid stochastic growth models which have a¢=>1 in
d =2,3 dimensions, with the roughness exponent a mea-
sured from the dependence of the saturation interface
width on the lateral substrate size, i.e., from the relation-
ship W(L,t— o )~L" exhibit anomalous dynamical
scaling behavior. The exponent k is finite when a>1
whereas « is infinitesimal [indicating G (1,¢)~Int or InL
depending on whether ¢!/ <<L or t!/2>> L, respectively]
when a=1. We have explicitly verified this for the
discrete 1+ model (d =2,3), d2+ model (d =2), and
d4+ model (d =3) of Das Sarma and Ghaisas [5],
finding k=1.6 (d =2), 0+ (d =3) in the 1+ model,
k=1.6 (d =2) in the d2+ model, and k=0+ (d =3) in
the d4+ model, where O+ is an infinitesimal indicating
logarithmic asymptotic behavior of the correlation func-
tion (instead of the usual saturation). We have also
verified the anomalous dynamic scaling behavior in the
V*h (d =2,3) and VX(Vh)? (d =2) continuum equations,
finding k=1 (d =2), 0+ (d =3) in the V*h equation and

k=0+ (d =2) in the V*(Vh)? nonlinear Lai—Das Sarma
equation [7]. All the other discrete and continuum
growth models introduced in Ref. [5] have a<1, and
therefore they exhibit the usual dynamic scaling
behavior.

In conclusion [12], we have introduced a generalized
dynamic scaling ansatz for super-rough (a>1) kinetic
growth models which resolves the puzzle of how a physi-
cally meaningful growth model may have a > 1, by show-
ing that the effective or the apparent roughness exponent
[13] a' for the height-height correlation function [cf. Eq.
(13)] becomes [13] a'=a—«/2, which for all the known
super-rough models satisfies @’ <1 (namely, a’ =1 for the
surface diffusion equation and the RC model, and a’'=0.7
for the DT and d2+ models). Thus, while the real a
measured from the dependence of W, (L) on L may be
larger than unity, the system size acts as a cutoff to en-
sure that the apparent a' [measured by studying the
behavior of G (r,t) as a function of r for r <<L] in the
correlation function never exceeds unity, resolving the
conceptual crisis of super-roughening. The issue of
whether «k is a true dynamical exponent or just a very
slow crossover effect remains unresolved at the present
time.
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